Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38464012

RESUMO

Although most adults in the United States will drink alcohol in their life, only about 6% will go on to develop an alcohol use disorder (AUD). While a great deal of work has furthered our understanding of the cycle of addiction, it remains unclear why certain people transition to disordered drinking. Altered activity in regions implicated in AUDs, like the basolateral amygdala (BLA), has been suggested to play a role in the pathophysiology of AUDs, but how these networks contribute to alcohol misuse remains unclear. Our recent work demonstrated that alcohol can modulate BLA network states and that GABAergic parvalbumin (PV) interneurons are crucial modulators of network activity in the BLA. Further, our lab has demonstrated that δ subunit-containing GABA A receptors, which are modulated by alcohol, are highly expressed on PV interneurons in the BLA. These receptors on PV interneurons have also been shown to influence alcohol intake in a voluntary binge drinking paradigm and anxiety-like behavior in withdrawal. Therefore, we hypothesized that alcohol may impact BLA network states via δ subunit-containing GABA A receptors on PV interneurons to impact the extent of alcohol use. To test this hypothesis, we measured the impact of acute alcohol exposure on oscillatory states in the basolateral amygdala and then assessed the relationship to the extent of voluntary ethanol consumption in the Intermittent Access, Drinking-in-the-Dark-Multiple Scheduled Access, and Chronic Intermittent Ethanol exposure paradigms. Remarkably, we demonstrate that the average alcohol intake negatively correlates with δ subunit-containing GABA A receptor expression on PV interneurons and gamma power in the BLA after the first exposure to alcohol. These data implicate δ subunit-containing GABA A receptor expression on PV interneurons in the BLA in voluntary alcohol intake and suggest that BLA network states may serve as a useful biomarker for those at risk for alcohol misuse. Significance Statement: Oscillatory states in the BLA have been demonstrated to drive behavioral states involved in emotional processing, including negative valence processing. Given that negative emotional states/hyperkatifeia contribute to the cycle of AUDs, our previous work demonstrating the ability of alcohol to modulate BLA network states and thereby behavioral states suggests that this mechanism may influence alcohol intake. Here we demonstrate a relationship between the ability of alcohol to modulate oscillations in the BLA and future alcohol intake such that the extent to which alcohol influences BLA network states predict the extent of future voluntary alcohol intake. These findings suggest that individual variability in the sensitivity of the BLA network to alcohol influences voluntary alcohol consumption.

2.
J Neuroendocrinol ; 36(4): e13378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38482748

RESUMO

Neurosteroids have been implicated in the pathophysiology of post-traumatic stress disorder (PTSD). Allopregnanolone is reduced in subsets of individuals with PTSD and has been explored as a novel treatment strategy. Both direct trauma exposure and witnessed trauma are risk factors for PTSD; however, the role of neurosteroids in the behavioral outcomes of these unique experiences has not been explored. Here, we investigate whether observational fear is associated with a reduced capacity for endogenous neurosteroidogenesis and the relationship with behavioral outcomes. We demonstrated that mice directly subjected to a threat (foot shocks) and those witnessing the threat have decreased plasma levels of allopregnanolone. The expression of a key enzyme involved in endogenous neurosteroid synthesis, 5α-reductase type 2, is decreased in the basolateral amygdala, which is a major emotional processing hub implicated in PTSD. We demonstrated that genetic knockdown or pharmacological inhibition of 5α-reductase type 2 exaggerates the behavioral expression of fear in response to witnessed trauma, whereas oral treatment with an exogenous, synthetic neuroactive steroid gamma-aminobutyric acid-A receptor positive allosteric modulator with molecular pharmacology similar to allopregnanolone (SGE-516 [tool compound]) decreased the behavioral response to observational fear. These data implicate impaired endogenous neurosteroidogenesis in the pathophysiology of threat exposure, both direct and witnessed. Further, these data suggest that treatment with exogenous 5α-reduced neurosteroids or targeting endogenous neurosteroidogenesis may be beneficial for the treatment of individuals with PTSD, whether resulting from direct or witnessed trauma.


Assuntos
Neuroesteroides , Animais , Camundongos , Pregnanolona/metabolismo , Receptores de GABA-A/metabolismo , Medo/fisiologia , Emoções , Colestenona 5 alfa-Redutase/metabolismo
3.
Elife ; 102021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726153

RESUMO

Selective relationships are fundamental to humans and many other animals, but relationships between mates, family members, or peers may be mediated differently. We examined connections between social reward and social selectivity, aggression, and oxytocin receptor signaling pathways in rodents that naturally form enduring, selective relationships with mates and peers (monogamous prairie voles) or peers (group-living meadow voles). Female prairie and meadow voles worked harder to access familiar versus unfamiliar individuals, regardless of sex, and huddled extensively with familiar subjects. Male prairie voles displayed strongly selective huddling preferences for familiar animals, but only worked harder to repeatedly access females versus males, with no difference in effort by familiarity. This reveals a striking sex difference in pathways underlying social monogamy and demonstrates a fundamental disconnect between motivation and social selectivity in males-a distinction not detected by the partner preference test. Meadow voles exhibited social preferences but low social motivation, consistent with tolerance rather than reward supporting social groups in this species. Natural variation in oxytocin receptor binding predicted individual variation in prosocial and aggressive behaviors. These results provide a basis for understanding species, sex, and individual differences in the mechanisms underlying the role of social reward in social preference.


What factors drive the formation of social relationships can vary greatly in animals. While some individuals may be motivated to find social partners, others may just tolerate being around others. A desire to avoid strangers may also lead an individual to seek out acquaintances or friends. Sometimes a mix of these factors shape social behavior. Studying motivation for social relationships in the laboratory is tricky. Traditional laboratory animals like mice and rats do not bond with specific peers or mates. But small burrowing rodents called voles are a more relationship-oriented alternative to mice and rats. Prairie voles form selective and enduring preferences for both their mates and familiar same-sex peers. Meadow voles on the other hand, live alone much of the year but move in with other animals over the winter. Beery et al. show that social motivation in voles varies by relationship type, species and sex. In the experiments, voles were first trained to press a lever to get a food reward. Then, the food reward was swapped with access to familiar or unfamiliar voles. Female prairie voles strived to be with animals they knew rather than to be with strangers, while male prairie voles tried hard to access any female. In contrast, meadow voles did not overly exert themselves to access other animals. Beery et al. then measured oxytocin receptor levels in the brains of prairie voles. Prairie voles that had more receptors for oxytocin in part of their brain known as the nucleus accumbens worked harder to access their familiar partner. But individuals with more oxytocin receptors in the bed nucleus of the stria terminalis were more likely to attack an unfamiliar animal. The meadow voles' behavior suggests that they are more motivated by tolerance of familiar animals, while the female prairie voles may find it rewarding to be with animals they have bonded with. These differences may help explain why these two species of vole have evolved different social behaviors. The experiments also suggest that oxytocin ­ which is linked with maternal behavior ­ plays an important role in social motivation. Learning more about the biological mechanisms that underlie vole social behaviors may help scientists identify fundamental aspects of social behavior that may apply to other species including humans.


Assuntos
Arvicolinae/psicologia , Motivação , Comportamento Social , Agressão , Animais , Feminino , Masculino , Receptores de Ocitocina/metabolismo , Recompensa , Fatores Sexuais , Especificidade da Espécie
4.
Psychopharmacology (Berl) ; 237(10): 3021-3031, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588079

RESUMO

RATIONALE: Stress plays a major role in the development of alcohol use disorder (AUD)-a history of chronic stress contributes to alcohol misuse, and withdrawal from alcohol elevates stress, perpetuating cycles of problematic drinking. Recent studies have shown that, in male mice, repeated chronic intermittent ethanol (CIE) and stress elevates alcohol use above either manipulation alone and impacts cognitive functions such as behavioral flexibility. OBJECTIVE: Here, we investigated the impact of CIE and stress on anxiety in both sexes, and whether the norepinephrine (NE) system via locus coeruleus, which is implicated in both stress and alcohol motivation, is involved. RESULTS: Male and female mice received multiple cycles of CIE and/or repeated forced swim stress (FSS), producing elevated drinking in both sexes. CIE/FSS treatment increased anxiety, which was blocked by treatment with the α1-AR inverse agonist prazosin. In contrast, administration of the corticotropin releasing factor receptor antagonist CP376395 into locus coeruleus did not reduce CIE/FSS-elevated anxiety. We also observed sex differences in behavioral responses to a history of CIE or FSS alone as well as differential behavioral consequences of prazosin treatment. CONCLUSIONS: These data indicate that NE contributes to the development of anxiety following a history of alcohol and/or stress, and that the influence of both treatment history and NE signaling is sex dependent. These results argue for further investigation of the NE system in relation to disrupted behavior following chronic alcohol and stress, and support the assertion that treatments may differ across sex based on differential neural system engagement.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Ansiedade/metabolismo , Ansiedade/psicologia , Etanol/administração & dosagem , Norepinefrina/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Feminino , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Camundongos , Norepinefrina/antagonistas & inibidores , Prazosina/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Caracteres Sexuais
5.
Front Behav Neurosci ; 12: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615879

RESUMO

Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social relationships. Consideration of these differences will be important for studies examining the neural mechanisms supporting different kinds of peer social behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...